
Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

1 Longest increasing subsequence

Example

k 1 2 3 4 5 6 7 8 9

L[k] 90 50 20 80 70 30 10 60 40

S[k]

1.1 Recurrence

1.2 Pseudocode

1 LIS(L)

2 Initialize S[1...n]

3 for k = 1 to n

4 S[k] = 1

5

6 for j = 1 to k-1

7 if L[k] > L[j] & S[k] < S[j] + 1

8 S[k] = S[j] + 1

9

10 return

Running time:

page 1



Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

2 Knapsack (KT §6.4)

Definition In the knapsack problem we are given

• a set of n items

• each item i has specified size si

• item i has value vi

Goal: Find subset of items of maximum total value such that the sum of their sizes is at most S.

Example S = 10
i 1 2 3 4

vi 10 40 30 50

si 5 4 6 3

2.1 Recurrence

page 2



Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

2.2 Pseudocode

1 Knapsack(s, n, S)

2 Initialize K[0, i] = K[w, 0] =

3 for i = 1 to n

4 for w = 1 to S

5 if s[j] > w

6

7 else

8

9 return

Running time:

Remark.

page 3



Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

3 Interval Scheduling/Activity Selection Problem (KT §6.1, CLRS §16.1)

Input: List of intervals S =

Goal: Find a subset

First attempt: Dynamic Programming

1. Subproblems: for any i < j, the optimal solution for intervals

2. Guess an interval

3. Recurrence:

page 4



Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

Second attempt: Improved dynamic programming
Sort the activities by:

Guess whether

Subproblems:

Recurrence:

page 5



Week 5: KT §6.4, CLRS §16.1 part 1/KT 6.1

3.1 Intro to greedy

Maybe we don’t need to try all possible activities? Can we identify an activity that is used in an optimal
solution?

Ideas:

• Activity with the

• Shortest

• Activity intersecting

Turns out

page 6


	Longest increasing subsequence
	Recurrence
	Pseudocode

	Knapsack (KT §6.4)
	Recurrence
	Pseudocode

	Interval Scheduling/Activity Selection Problem (KT §6.1, CLRS §16.1)
	Intro to greedy


