
Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

1 Revisiting Growth of Functions (CLRS §3.1)

Goal: Establish notation that enables us to compare relative performance of different algorithms.

Definition • T (n) = O(g(n)) means there exists c > 0 such that T (n) ≤ cg(n) for sufficiently large n.

• T (n) = Ω(g(n)) means there exists c > 0 such that T (n) ≥ cg(n) for sufficiently large n.

• T (n) = Θ(g(n)) means there exists c1, c2 such that c1g(n) ≤ T (n) ≤ c2g(n) for sufficiently large n.

• T (n) = o(g(n)) means lim
n→∞

T (n)

g(n)
=

Example 3n3 + 5n2 + 10643n ∈ Θ( )

Example Give an example of T (n) and g(n) such that T (n) 6= o(g(n)), but T (n) = O(g(n)).

Example 5n2 + 11 ∈ o( )

1.1 Asymptotic notation in equations

A set in a formula represents an anonymous function in that set.

Example f(n) = n3 +O(n2)

Example n2 +O(n) = O(n2)
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1.2 Proofs involving order of growth

Example

Claim. f ∈ O(g(n)) if and only if g ∈ Ω(f(n))
Proof.
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2 Divide and Conquer

2.1 Mergesort (CLRS §2.3)

2.1.1 The Merge Subroutine

1 i = 1

2 j = 1

3 for k = 1 to

4 if

5 C[k] =

6 i =

7 else

8 C[k] =

9 j =
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Alternative pseudocode:

1 To merge sorted arrays L[1 ... m] and R[1 ... p] into array C[1 ... m+p]

2 Maintain a current index for each list, each initialized to 1

3 While both lists have not been completely traversed:

4 Let L[i] and R[j] be the current elements

5 Copy the smaller of L[i] and R[j] to C

6 Advance the current index for the array from which the smaller element

was selected

7 EndWhile

8 Once one array has been completely traversed, copy the remainder of the

other array to C
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2.1.2 Proof of Correctness of Merge

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

2.1.3 Running Time of Merge
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2.1.4 Back to Mergesort: Correctness, Running Time, Recursion Tree

page 6



Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

So overall runtime is:

Proof of time complexity
Claim. For large enough c1 > 0, and for all n ≥ 2, T (n) ≤

Proof.
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Example
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2.2 Intro to Solving Recurrences Using the Recursion Tree Method (CLRS §4.4)

Example T (n) = 2T
(n

2

)
+ cn2

Example T (n) = 2T
(n

2

)
+ c
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2.3 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

1 k=PARTITION

2 QUICKSORT

3 QUICKSORT

2.3.1 Partition

1 pivot =

2 i =

3 for j = 1 to n-1

4 if A[j]

5

6 i =

7

8 RETURN i
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2.3.2 Correctness of Partition (and Quicksort)

Loop invariant:

• Initialization:

• Maintenance:

• Termination:
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2.3.3 Running Time of Partition and Quicksort
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2.4 Integer Multiplication (Karatsuba) (KT §5.5)

Input:

Goal:

2.4.1 Elementary School Algorithm

• Time complexity of grade school addition:

• Time complexity of grade school multiplication:

2.4.2 Algorithm Using Divide & Conquer

First attempt:
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Total runtime:

You try! Describe a procedure that given four integers a, b, c, d, outputs the three numbers ab, cd and
ad+bc and uses only three multiplications (four would be obvious). You are free to use as many additions
and subtractions as you wish.
(Hint: Consider the product (a + c)(b + d).)

Second attempt:
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