1 Revisiting Growth of Functions (CLRS §3.1)

Goal: Establish notation that enables us to compare relative performance of different algorithms.

Definition • $T(n) = \mathcal{O}(g(n))$ means there exists c > 0 such that $T(n) \le cg(n)$ for sufficiently large n.

- $T(n) = \Omega(g(n))$ means there exists c > 0 such that $T(n) \ge cg(n)$ for sufficiently large n.
- $T(n) = \Theta(g(n))$ means there exists c_1, c_2 such that $c_1g(n) \leq T(n) \leq c_2g(n)$ for sufficiently large n.
- T(n) = o(g(n)) means $\lim_{n \to \infty} \frac{T(n)}{g(n)} =$

Example $3n^3 + 5n^2 + 10643n \in \Theta($

Example Give an example of T(n) and g(n) such that $T(n) \neq o(g(n))$, but $T(n) = \mathcal{O}(g(n))$.

Example $5n^2 + 11 \in o($)

1.1 Asymptotic notation in equations

A set in a formula represents an anonymous function in that set.

Example $f(n) = n^3 + \mathcal{O}(n^2)$

Example $n^2 + \mathcal{O}(n) = \mathcal{O}(n^2)$

1.2 Proofs involving order of growth

Example

Claim. $f \in \mathcal{O}(g(n))$ if and only if $g \in \Omega(f(n))$ Proof.

2 Divide and Conquer

2.1 Mergesort (CLRS §2.3)

2.1.1 The Merge Subroutine

Alternative pseudocode:

To merge sorted arrays L[1 ... m] and R[1 ... p] into array C[1 ... m+p] Maintain a current index for each list, each initialized to ${\bf 1}$ While both lists have not been completely traversed: 3 4 Let L[i] and R[j] be the current elements Copy the smaller of L[i] and R[j] to C $\,$ 5 Advance the current index for the array from which the smaller element 6 was selected EndWhile 7 8 Once one array has been completely traversed, copy the remainder of the other array to C

2.1.2 Proof of Correctness of Merge

 $Loop\ invariant:$

• Initialization:

• Maintenance:

• Termination:

2.1.3 Running Time of Merge

2.1.4 Back to Mergesort: Correctness, Running Time, Recursion Tree

So overall runtime is:

Proof of time complexity

Claim. For large enough $c_1 > 0$, and for all $n \geq 2$, $T(n) \leq$

Proof.

Example

2.2 Intro to Solving Recurrences Using the Recursion Tree Method (CLRS §4.4)

Example
$$T(n) = 2T\left(\frac{n}{2}\right) + cn^2$$

Example
$$T(n) = 2T\left(\frac{n}{2}\right) + c$$

2.3 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

```
1 k=PARTITION
2 QUICKSORT
3 QUICKSORT
```

2.3.1 Partition

```
1 pivot =
2 i =
3 for j = 1 to n-1
4          if A[j]
5
6          i =
7
8 RETURN i
```

2.3.2 Correctness of Partition (and Quicksort)
Loop invariant:
• Initialization:
• Maintenance:

• Termination:

2.3.3 Running Time of Partition and Quicksort

2.4	Integer	Multiplication	(Karatsuba)	(KT	$\S 5.5)$
Input.	:				
Goal:					

2.4.1 Elementary School Algorithm

• Time complexity of grade school addition:

• Time complexity of grade school multiplication:

2.4.2 Algorithm Using Divide & Conquer

First attempt:

Total runtime:
You try! Describe a procedure that given four integers a, b, c, d , outputs the three numbers ab, cd and $ad+bc$ and uses only three multiplications (four would be obvious). You are free to use as many additions and subtractions as you wish. (Hint: Consider the product $(a+c)(b+d)$.)
$Second\ attempt:$