
Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

1 Revisiting Growth of Functions (CLRS §3.1)

Goal: Establish notation that enables us to compare relative performance of different algorithms.

Definition • T (n) = O(g(n)) means there exists c > 0 such that T (n) ≤ cg(n) for sufficiently large n.

• T (n) = Ω(g(n)) means there exists c > 0 such that T (n) ≥ cg(n) for sufficiently large n.

• T (n) = Θ(g(n)) means there exists c1, c2 such that c1g(n) ≤ T (n) ≤ c2g(n) for sufficiently large n.

• T (n) = o(g(n)) means lim
n→∞

T (n)

g(n)
=

Example 3n3 + 5n2 + 10643n ∈ Θ()

Example Give an example of T (n) and g(n) such that T (n) 6= o(g(n)), but T (n) = O(g(n)).

Example 5n2 + 11 ∈ o()

1.1 Asymptotic notation in equations

A set in a formula represents an anonymous function in that set.

Example f(n) = n3 +O(n2)

Example n2 +O(n) = O(n2)

page 1

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

1.2 Proofs involving order of growth

Example

Claim. f ∈ O(g(n)) if and only if g ∈ Ω(f(n))
Proof.

page 2

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2 Divide and Conquer

2.1 Mergesort (CLRS §2.3)

2.1.1 The Merge Subroutine

1 i = 1

2 j = 1

3 for k = 1 to

4 if

5 C[k] =

6 i =

7 else

8 C[k] =

9 j =

page 3

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

Alternative pseudocode:

1 To merge sorted arrays L[1 ... m] and R[1 ... p] into array C[1 ... m+p]

2 Maintain a current index for each list, each initialized to 1

3 While both lists have not been completely traversed:

4 Let L[i] and R[j] be the current elements

5 Copy the smaller of L[i] and R[j] to C

6 Advance the current index for the array from which the smaller element

was selected

7 EndWhile

8 Once one array has been completely traversed, copy the remainder of the

other array to C

page 4

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.1.2 Proof of Correctness of Merge

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

2.1.3 Running Time of Merge

page 5

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.1.4 Back to Mergesort: Correctness, Running Time, Recursion Tree

page 6

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

So overall runtime is:

Proof of time complexity
Claim. For large enough c1 > 0, and for all n ≥ 2, T (n) ≤

Proof.

page 7

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

Example

page 8

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.2 Intro to Solving Recurrences Using the Recursion Tree Method (CLRS §4.4)

Example T (n) = 2T
(n

2

)
+ cn2

Example T (n) = 2T
(n

2

)
+ c

page 9

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.3 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

1 k=PARTITION

2 QUICKSORT

3 QUICKSORT

2.3.1 Partition

1 pivot =

2 i =

3 for j = 1 to n-1

4 if A[j]

5

6 i =

7

8 RETURN i

page 10

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.3.2 Correctness of Partition (and Quicksort)

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

page 11

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.3.3 Running Time of Partition and Quicksort

page 12

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

2.4 Integer Multiplication (Karatsuba) (KT §5.5)

Input:

Goal:

2.4.1 Elementary School Algorithm

• Time complexity of grade school addition:

• Time complexity of grade school multiplication:

2.4.2 Algorithm Using Divide & Conquer

First attempt:

page 13

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

Total runtime:

You try! Describe a procedure that given four integers a, b, c, d, outputs the three numbers ab, cd and
ad+bc and uses only three multiplications (four would be obvious). You are free to use as many additions
and subtractions as you wish.
(Hint: Consider the product (a + c)(b + d).)

Second attempt:

page 14

Week 2: CLRS §2.3, 3.1, 4.3-4.4, 7.1-7.2, KT §5.5, 5.4

page 15

	Revisiting Growth of Functions (CLRS §3.1)
	Asymptotic notation in equations
	Proofs involving order of growth

	Divide and Conquer
	Mergesort (CLRS §2.3)
	The Merge Subroutine
	Proof of Correctness of Merge
	Running Time of Merge
	Back to Mergesort: Correctness, Running Time, Recursion Tree

	Intro to Solving Recurrences Using the Recursion Tree Method (CLRS §4.4)
	Quicksort (CLRS §7.1, 7.2)
	Partition
	Correctness of Partition (and Quicksort)
	Running Time of Partition and Quicksort

	Integer Multiplication (Karatsuba) (KT §5.5)
	Elementary School Algorithm
	Algorithm Using Divide & Conquer

