Theorem 22.9 (white path theorem) The vertex v is a descendant of u in the DFS forest if and only if at time u.d, there exists a path from u to v with only white vertices.

Lemma 22.11 A directed graph is acyclic if and only if DFS finds no back edges. Equivalently, a directed graph has cycles if and only if DFS finds back edges.

1 Topological Sort (CLRS §22.4)

Tasks to be performed where some tasks must be completed before others. E.g. prerequisites for courses. Input is

Example

Definition A topological ordering of G is an ordering of its vertices v_1, \dots, v_n so that

Algorithm. Input:
1. Run
2. Output
Runtime.
Theorem. The given algorithm outputs
Proof.

2	Strongly	Connected	Components	(SCC)	(CLRS	$\S 22.5)$	
Exa	mple						
Def	inition A str	ongly connecte	ed component (SC	CC) of a dir	rected graph	G = (V, E) is a	
-	DI.	. ~900					
-	The compone	ent graph G^{SCC}	is the graph				

Claim. The component graph is a DAG. Proof.
Consider now DFS on the graph G . We can pretend that this DFS takes place in G^{SCC} , in the following sense: we say that
• a component is discovered when
• a component is finished when
• a component starts

Key lemma: The "pretend" DFS on $G^{\rm SCC}$ induced by the DFS on G is a valid DFS exploration of $G^{\rm SCC}$. Proof idea.

Observation. The last vertex to finish
We can now identify the entire left-most component by
$\mathrm{SCC}(\mathrm{G})$
1. Call DFS(G) to compute
2. Call DFS (G^T) where in the main outer loop consider
3. Output
Runtime.

3 Minimum Spanning Tree (MST) Problem

Wiring: Naive Approach

Central Office

Central Office

Expensive!

Minimize the total length of wire connecting the customers 1

Wiring: Better Approach

3.1 Graph Theory Terminology

Definition A \underline{tree}

Definition A spanning tree

Minimum spanning tree problem:

¹https://www.javatpoint.com/applications-of-minimum-spanning-tree

Why not check all spanning trees?

Example

Remark. A tree on n vertices

$$\leq |E| \leq$$

MST properties. $T \subseteq E$

1. If
$$|T| = |V| - 1$$
 and no cycles, then

2. If |T| = |V| - 1 and spanning, then

3.2 Greedy choice and generic method (CLRS §23.1)

```
GenericMST(G, w)

1
2 while A is not a spanning tree
3     find
4     A =
5 return A
```

Definition • A cut of G = (V, E) is

- Edge (u, v) crosses a cut
- \bullet A cut **respects** A if
- (u, v) is a **light edge** crossing a cut if

Theorem. Let $A \subseteq E$ be included in some MST, $(S, V \setminus S)$ be a cut respecting A, and (u, v) a light edge crossing $(S, V \setminus S)$. Then

Proof.

4 Prim's Algorithm (CLRS §23.2)

4.1 Algorithm Outline and Example

- 1. Start with
- 2. Choose an arbitrary
- 3. Start growing
 - (a) Find all
 - (b) Choose the
 - (c) Add the

4.2 Algorithm Pseudocode & Correctness

```
MST-PRIM(G, w, r)
   for u in V
        u.key =
2
        u.parent =
4 \text{ r.key} =
5
   Q =
   while Q
7
        u =
8
        for v in
9
             if v in Q and
                  v.parent =
10
                  v.key =
11
```

Correctness

4.3 Time complexity of Prim's

Vertex	A	В	С	D	E	F	G	Н
Key Value								
Parent								

Vertex	A	В	С	D	E	F	G	Н
Key Value								
Parent								

Vertex	A	В	С	D	Е	F	G	Н
Key Value								
Parent								

Vertex	A	В	С	D	Е	F	G	Н
Key Value								
Parent								

Vertex	A	В	С	D	Е	F	G	Н
Key Value								
Parent								

Vertex	A	В	$^{\circ}$ C	D	E	F	G	Н
Key Value								
Parent								

5 Kruskal's algorithm (CLRS §23.2)

5.1 Plan & Correctness

- 1. Order edges by
- 2. *T*

Correctness.

5.2 Pseudocode

```
MST-PRIM(G, w, r)

1 A =
2 for v in
3 MAKESET(V)
4 Sort E in
5 for (u, v) in
6 if
7 A =
8 UNION
9 Return
```

5.3 Time complexity of Kruskal's

5.4 Disjoint Forest / Union-Find Data Structure (§21.3)

- parent pointers
- \bullet size
- 1. For any x, find
- 2. Given C_1, C_2 with roots

Claim. If x.parent = y, then

```
1 initialize v.parent = v, v.size = 1
2 while x.parent
       x = x.parent
3
4 while y.parent
        y = y.parent
5
6 if x not equal to y
        if x.size <= y.size</pre>
7
            x.parent =
8
            y.size =
9
10
        else
11
            y.parent =
12
            x.size =
```