
Week 10: CLRS §22.4, 22.5, CLRS Chapter 23, KT Chapter 4

Theorem 22.9 (white path theorem) The vertex v is a descendant of u in the DFS forest if and only
if at time u.d, there exists a path from u to v with only white vertices.

Lemma 22.11 A directed graph is acyclic if and only if DFS finds no back edges. Equivalently, a directed
graph has cycles if and only if DFS finds back edges.

1 Topological Sort (CLRS §22.4)

Tasks to be performed where some tasks must be completed before others. E.g. prerequisites for courses.
Input is

Example

Definition A topological ordering of G is an ordering of its vertices v1, · · · , vn so that
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Algorithm.
Input:

1. Run

2. Output

Runtime.

Theorem. The given algorithm outputs

Proof.

Remark. In every DAG G, there is a vertex v
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2 Strongly Connected Components (SCC) (CLRS §22.5)

Example

Definition A strongly connected component (SCC) of a directed graph G = (V,E) is a

The component graph GSCC is the graph
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Claim. The component graph is a DAG.
Proof.

Consider now DFS on the graph G. We can pretend that this DFS takes place in GSCC, in the following
sense: we say that

• a component is discovered when

• a component is finished when

• a component starts
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Key lemma: The “pretend” DFS on GSCC induced by the DFS on G is a valid DFS exploration of GSCC .
Proof idea.
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Observation. The last vertex to finish

We can now identify the entire left-most component by

SCC(G)

1. Call DFS(G) to compute

2. Call DFS(GT ) where in the main outer loop consider

3. Output

Runtime.
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Example
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3 Minimum Spanning Tree (MST) Problem

1

3.1 Graph Theory Terminology

Definition A tree

Definition A spanning tree

Minimum spanning tree problem:

1https://www.javatpoint.com/applications-of-minimum-spanning-tree
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Example

Why not check all spanning trees?

Example

Remark. A tree on n vertices

≤ |E| ≤

MST properties. T ⊆ E

1. If |T | = |V | − 1 and no cycles, then

2. If |T | = |V | − 1 and spanning, then
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3.2 Greedy choice and generic method (CLRS §23.1)

GenericMST(G, w)

1

2 while A is not a spanning tree

3 find

4 A =

5 return A

Definition • A cut of G = (V,E) is

• Edge (u, v) crosses a cut

• A cut respects A if

• (u, v) is a light edge crossing a cut if

Theorem. Let A ⊆ E be included in some MST, (S, V \ S) be a cut respecting A, and (u, v) a light edge
crossing (S, V \ S). Then

Proof.
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4 Prim’s Algorithm (CLRS §23.2)

4.1 Algorithm Outline and Example

1. Start with

2. Choose an arbitrary

3. Start growing

(a) Find all

(b) Choose the

(c) Add the

Example
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4.2 Algorithm Pseudocode & Correctness

MST-PRIM(G, w, r)

1 for u in V

2 u.key =

3 u.parent =

4 r.key =

5 Q =

6 while Q

7 u =

8 for v in

9 if v in Q and

10 v.parent =

11 v.key =

Correctness

4.3 Time complexity of Prim’s
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Example

Vertex A B C D E F G H

Key Value

Parent

Vertex A B C D E F G H

Key Value

Parent

Vertex A B C D E F G H

Key Value

Parent
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Vertex A B C D E F G H

Key Value

Parent

Vertex A B C D E F G H

Key Value

Parent

Vertex A B C D E F G H

Key Value

Parent
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5 Kruskal’s algorithm (CLRS §23.2)

5.1 Plan & Correctness

1. Order edges by

2. T

Correctness.

5.2 Pseudocode

MST-PRIM(G, w, r)

1 A =

2 for v in

3 MAKESET(V)

4 Sort E in

5 for (u, v) in

6 if

7 A =

8 UNION

9 Return

5.3 Time complexity of Kruskal’s
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5.4 Disjoint Forest / Union-Find Data Structure (§21.3)

• parent pointers

• size

1. For any x, find

2. Given C1, C2 with roots

Claim. If x.parent = y, then
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Example

1 initialize v.parent = v, v.size = 1

2 while x.parent

3 x = x.parent

4 while y.parent

5 y = y.parent

6 if x not equal to y

7 if x.size <= y.size

8 x.parent =

9 y.size =

10 else

11 y.parent =

12 x.size =
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