
Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Dynamic Programming! (CLRS Chapter 15, KT Chapter 6)

1 Intro (Recap)

• Dynamic programming is a technique for designing algorithms.

– Fits problems where we want to find an optimal solution.

– Unlike sorting or searching.

• Based on solving smaller instances of the same problem.

– Similar to divide and conquer except that the smaller problems overlap.

2 Rod cutting (CLRS §15.1)

Recall: What is the highest revenue we can get by cutting an n foot rod and selling the pieces?

page 1



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Example Maximize revenue from rod of length 5.

Last time we discussed an algorithm for finding optimal revenue. How do we output the actual sequence
of cuts we should do?

1 r[0] = 0

2 for j = 1 to n

3 q =

4 for i = 1 to

5 if q

6 q =

7 s[j] =

8 r[j] =

9 print r[n]

10 while n > 0

11 print

12 n =

page 2



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

page 3



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

3 Dynamic Programming Principles (CLRS §15.3)

The Dynamic Programming Approach

• Instead of one problem,

• First of the problem.

• Gradually handle by relying on smaller ones.

• in the calculations.

page 4



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

4 Longest common subsequence (CLRS §15.4)

Example application: bioinformatics (similarity between DNA sequences)

Input:

Output:

Example

• Subproblems:

page 5



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

• Guess:

• Recurrence:

4.1 Algorithm idea

page 6



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Example

Bottom up algorithm:

1 for i = 1 to m:

2 C[i, 0] =

3 for j = 0 to n:

4 C[0, j] =

5 for i = 1 to m:

6 for j = 1 to n:

7 if

8 C[i, j] =

9 B[i, j] =

10 else if

11 C[i, j] =

12 B[i, j] =

13 else

14 C[i, j] =

15 B[i, j] =

16 return

page 7



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Example

page 8



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

General Guidelines
How do we determine if a problem can be handled using dynamic programming?

• The problem asks to find an optimal solution

• It is easy to obtain an optimal solution given solutions to slightly smaller subproblems.

• Likely to lead to an efficient algorithm when the subproblems overlap.

5 steps for DP

1.

2.

3.

4.

5.

page 9



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

5 Knapsack (KT §6.4)

• List of n items each of

• Knapsack of size

• What is the max total

1. Subproblems

2. Guess

3. Recurrence

page 10



Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Example

page 11


	Intro (Recap)
	Rod cutting (CLRS §15.1)
	Dynamic Programming Principles (CLRS §15.3)
	Longest common subsequence (CLRS §15.4)
	Algorithm idea

	Knapsack (KT §6.4)

