
Week 5: CLRS §15.1, 15.3, 15.4, KT §6.4

Dynamic Programming! (CLRS Chapter 15, KT Chapter 6)

1 Intro (Recap)

• Dynamic programming is a technique for designing algorithms.

– Fits problems where we want to find an optimal solution.

– Unlike sorting or searching.

• Based on solving smaller instances of the same problem.

– Similar to divide and conquer except that the smaller problems overlap.

2 Rod cutting (CLRS §15.1)

Recall: What is the highest revenue we can get by cutting an n foot rod and selling the pieces?
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Example Maximize revenue from rod of length 5.

Last time we discussed an algorithm for finding optimal revenue. How do we output the actual sequence
of cuts we should do?

1 r[0] = 0

2 for j = 1 to n

3 q =

4 for i = 1 to

5 if q

6 q =

7 s[j] =

8 r[j] =

9 print r[n]

10 while n > 0

11 print

12 n =
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3 Dynamic Programming Principles (CLRS §15.3)

The Dynamic Programming Approach

• Instead of one problem,

• First of the problem.

• Gradually handle by relying on smaller ones.

• in the calculations.
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4 Longest common subsequence (CLRS §15.4)

Example application: bioinformatics (similarity between DNA sequences)

Input:

Output:

Example

• Subproblems:
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• Guess:

• Recurrence:

4.1 Algorithm idea
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Example

Bottom up algorithm:

1 for i = 1 to m:

2 C[i, 0] =

3 for j = 0 to n:

4 C[0, j] =

5 for i = 1 to m:

6 for j = 1 to n:

7 if

8 C[i, j] =

9 B[i, j] =

10 else if

11 C[i, j] =

12 B[i, j] =

13 else

14 C[i, j] =

15 B[i, j] =

16 return
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Example
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General Guidelines
How do we determine if a problem can be handled using dynamic programming?

• The problem asks to find an optimal solution

• It is easy to obtain an optimal solution given solutions to slightly smaller subproblems.

• Likely to lead to an efficient algorithm when the subproblems overlap.

5 steps for DP

1.

2.

3.

4.

5.
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5 Knapsack (KT §6.4)

• List of n items each of

• Knapsack of size

• What is the max total

1. Subproblems

2. Guess

3. Recurrence
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Example
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