1 Median/Order Statistics and Selection (CLRS §9.2, 9.3)

We saw in Quicksort the need for median. More general question:

Input: A set A of n distinct numbers

Output:

Special cases: i = 1, i = n

1.1 A randomized algorithm (§9.2)

```
1 Choose j randomly from
2 k =
3 If k = i
4 Return
5 Elseif k > i
6 Return
7 Else
8 Return
```

Example

1.1.1 Running time:

1.2	\mathbf{A}	deterministic	algorithm	$(\S 9.3)$)
-----	--------------	---------------	-----------	------------	---

- 1. Partition A into
- 2. Compute median of
- 3. Compute median of

1.2.1 Running time:

2 Lower bounds on comparison queries

All the sorting/selecting algorithms we have seen so far are comparison based. They don't care about the actual numbers in the array, only their relative order. Comparison model: input items are "black boxes" and only allowed comparison. Time cost:

2.1 Example: Maximum finding algorithm (§9.1)

Total number of comparisons:

Can we compute maximum with fewer comparisons?

Claim. Computing maximum of n elements requires *Proof.*

2.2 Sorting (§8.1)

2.2.1 Decision Tree

Comparison algorithm can be viewed as tree of all possible comparisons, their outcomes, and the resulting answer.

Decision tree	Algorithm
internal node	
leaf	
	single execution of algorithm
	single execution of algorithm
	running time
	worst case running time

What is the number	of com	parisons 1	performed	on	the	worst	case	input?

2.2.2 Sorting lower bound

Corollary. MergeSort, QuickSort (with median pivot), are

3 Non-comparison based sorts

3.1 Counting sort

Best sorting algorithm is

Conjectured:

Example

Algorithm works, but we need to preserve the data associated with each key, not just sort the keys themselves.

Assume keys are in

```
1 L = array of
2 for j in range(n):
3
4 output = []
5 for i in range(k):
6 output.
```

CLRS:

```
1 For i = 1 to k
2         C[i] = 0
3 For j = 0 to n
4         C[A[j]] += 1
5 // C[i] now
6 For i = 2 to k
7         C[i] += C[i-1]
8 // C[i] now
9 For j = n downto 1
10         B[C[A[j]]] = A[j]
11         C[A[j]] -= 1
```

Runtime:

3.2 Radix sort (§8.3)

Assume keys are in

4 Dynamic Programming! (CLRS Chapter 15, KT Chapter 6)

4.1 Intro and Memoized Fibonacci

Naive recursive algorithm:

```
1 if n <= 2: f = 1
2 else: f =
3 return f</pre>
```

Correct, but

Recurrence for running time

 $Memoized\ DP\ algorithm\ -\ the\ idea$

4.2 Rod cutting (CLRS §15

What is the highest revenue we can get by cutting an n foot rod and selling the pieces?

Example

Q: How many total ways are there to cut the rod?

Strategy: Look at a single step and reduce to a previous problem.

Naive recursive algorithm:

```
1 if n == 0:
2    return
3 q =
4 for i = 1 to n:
5    q =
6 return q
```

Running time

$Memoized\ DP\ algorithm$

```
1  if memo[n] exists:
2    return
3  4
5  6
7  8  memo[n] =
9  return
```

Running time

Bottom-up version

```
1 r[0] = 0
2 for j = 1 to n
3          q =
4          for i = 1 to
5          q =
6          r[j] =
7 return
```

How do we output the actual sequence of cuts we should do?

```
1 r[0] = 0
2
   for j = 1 to n
 3
         q =
 4
         for i = 1 to
              \quad \text{if } q
 5
 6
                    q =
                    s[j] =
 7
         r[j] =
 8
   print r[n]
   while n > 0
10
         print
11
12
         n =
```

4.3	Longest	common	subsequence	(CLRS	§15.4)
-----	---------	--------	-------------	-------	-------	---

Example application: bioinformatics (similarity between DNA sequences)

Input:

Output:

Example

Optimal substructure:

Theorem 1. If $X = x_1 \dots x_m$, $Y = y_1 \dots y_n$, and $Z = z_1 \dots z_k$ is an LCS of X and Y,

1. If
$$x_m = y_n$$
, then

2. If
$$x_m \neq y_n$$
, then

(a) if
$$z_k \neq x_m$$
, then

(b) if
$$z_k \neq y_m$$
, then

• Subproblems:		
• Recurrence:		
• Naive recursion vs memoized:		
, and a second of the second o		

Bottom up algorithm:

```
1 for i = 1 to m:
        C[i, 0] =
  for j = 1 to n:
        C[0, j] =
4
   for i = 1 to m:
5
6
        for j = 0 to n:
             if
7
                 C[i, j] =
8
                 B[i, j] =
9
             else if
10
                 C[i, j] =
11
                 B[i, j] =
12
13
             else
                 C[i, j] =
14
                 B[i, j] =
15
16 return
```