
Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

1 Median/Order Statistics and Selection (CLRS §9.2, 9.3)

We saw in Quicksort the need for median.
More general question:

Input: A set A of n distinct numbers

Output:

Special cases: i = 1, i = n

1.1 A randomized algorithm (§9.2)

1 Choose j randomly from

2 k =

3 If k = i

4 Return

5 Elseif k > i

6 Return

7 Else

8 Return

Example

page 1

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

1.1.1 Running time:

page 2

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

1.2 A deterministic algorithm (§9.3)

1. Partition A into

2. Compute median of

3. Compute median of

1.2.1 Running time:

page 3

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

2 Lower bounds on comparison queries

All the sorting/selecting algorithms we have seen so far are comparison based. They don’t care about the
actual numbers in the array, only their relative order. Comparison model: input items are “black boxes”
and only allowed comparison. Time cost:

2.1 Example: Maximum finding algorithm (§9.1)

1 current_max =

2 For i = 3 to n

3 current_max =

4 Return

Total number of comparisons:

Can we compute maximum with fewer comparisons?

Claim. Computing maximum of n elements requires
Proof.

page 4

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

2.2 Sorting (§8.1)

2.2.1 Decision Tree

Comparison algorithm can be viewed as tree of all possible comparisons, their outcomes, and the resulting
answer.

Decision tree Algorithm

internal node

leaf

single execution of algorithm

running time

worst case running time

page 5

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

What is the number of comparisons performed on the worst case input?

2.2.2 Sorting lower bound

Corollary. MergeSort, QuickSort (with median pivot), are

page 6

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

3 Non-comparison based sorts

3.1 Counting sort

Best sorting algorithm is

Conjectured:

Example

Algorithm works, but we need to preserve the data associated with each key, not just sort the keys
themselves.

Assume keys are in

1 L = array of

2 for j in range(n):

3

4 output = []

5 for i in range(k):

6 output.

page 7

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

CLRS:

1 For i = 1 to k

2 C[i] = 0

3 For j = 0 to n

4 C[A[j]] += 1

5 // C[i] now

6 For i = 2 to k

7 C[i] += C[i-1]

8 // C[i] now

9 For j = n downto 1

10 B[C[A[j]]] = A[j]

11 C[A[j]] -= 1

Runtime:

3.2 Radix sort (§8.3)

Assume keys are in

page 8

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

4 Dynamic Programming! (CLRS Chapter 15, KT Chapter 6)

4.1 Intro and Memoized Fibonacci

Naive recursive algorithm:

1 if n <= 2: f = 1

2 else: f =

3 return f

Correct, but

Recurrence for running time

Memoized DP algorithm - the idea

page 9

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

4.2 Rod cutting (CLRS §15.1)

What is the highest revenue we can get by cutting an n foot rod and selling the pieces?

Example

Q: How many total ways are there to cut the rod?

Strategy: Look at a single step and reduce to a previous problem.

Naive recursive algorithm:

1 if n == 0:

2 return

3 q =

4 for i = 1 to n:

5 q =

6 return q

Running time

page 10

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

Memoized DP algorithm

1 if memo[n] exists:

2 return

3

4

5

6

7

8 memo[n] =

9 return

Running time

Bottom-up version

1 r[0] = 0

2 for j = 1 to n

3 q =

4 for i = 1 to

5 q =

6 r[j] =

7 return

page 11

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

How do we output the actual sequence of cuts we should do?

1 r[0] = 0

2 for j = 1 to n

3 q =

4 for i = 1 to

5 if q

6 q =

7 s[j] =

8 r[j] =

9 print r[n]

10 while n > 0

11 print

12 n =

page 12

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

4.3 Longest common subsequence (CLRS §15.4)

Example application: bioinformatics (similarity between DNA sequences)

Input:

Output:

Example

Optimal substructure:

Theorem 1. If X = x1 . . . xm, Y = y1 . . . yn, and Z = z1 . . . zk is an LCS of X and Y ,

1. If xm = yn, then

2. If xm 6= yn, then

(a) if zk 6= xm, then

(b) if zk 6= ym, then

page 13

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

• Subproblems:

• Recurrence:

• Naive recursion vs memoized:

page 14

Week 4: CLRS Chapters 8 & 9, §15.1, 15.4

Bottom up algorithm:

1 for i = 1 to m:

2 C[i, 0] =

3 for j = 1 to n:

4 C[0, j] =

5 for i = 1 to m:

6 for j = 0 to n:

7 if

8 C[i, j] =

9 B[i, j] =

10 else if

11 C[i, j] =

12 B[i, j] =

13 else

14 C[i, j] =

15 B[i, j] =

16 return

page 15

	Median/Order Statistics and Selection (CLRS §9.2, 9.3)
	A randomized algorithm (§9.2)
	Running time:

	A deterministic algorithm (§9.3)
	Running time:

	Lower bounds on comparison queries
	Example: Maximum finding algorithm (§9.1)
	Sorting (§8.1)
	Decision Tree
	Sorting lower bound

	Non-comparison based sorts
	Counting sort
	Radix sort (§8.3)

	Dynamic Programming! (CLRS Chapter 15, KT Chapter 6)
	Intro and Memoized Fibonacci
	Rod cutting (CLRS §15.1)
	Longest common subsequence (CLRS §15.4)

