
Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

We are exploring the algorithm design technique known as Divide and Conquer. We’ll see various
algorithms that use this technique.

Running time analysis of such algorithms naturally involves recurrences, since we may state the running
time in terms of the running time on smaller inputs. To help us determine the running time of such
algorithms, let’s think more about solving recurrences!

1 Recurrences

1.1 Recursion Tree Method (CLRS §4.4)

Example T (n) = 2T
(n

2

)
+ cn2, T (1) = c

Example T (n) = 2T
(n

2

)
+ c, T (1) = c

page 1



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

1.2 The substitution method (CLRS §4.3)

Example

T (n) = 4T
(n

2

)
+ n, T (1) = 1

page 2



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

1.2.1 Careful with asymptotic notation and bogus proofs!

page 3



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

1.2.2 Ceilings and floors

Example

T (n) = T
(⌈n

2

⌉)
+ 1, T (1) = 1

page 4



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

1.3 Master Theorem (CLRS §4.5)

Let a ≥ 1 and b > 1 be constants, f(n), T (n) a function defined on natural numbers by the recurrence:

T (n) = aT (n/b) + f(n)

We interpret n/b to mean either dn/be or bn/bc. Then, T (n) has the following asymptotic bounds:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and af(n/b) ≤ cf(n) for some constant c < 1 and all
sufficiently large n, then T (n) = Θ(f(n)).

page 5



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

Example Use the Master theorem to solve the following:

1. T (n) = 9T
(⌈

n
3

⌉)
+ n

2. T (n) = T
(⌈

2n
3

⌉)
+ 1

3. T (n) = 2T
(⌈

n
2

⌉)
+ n2

What is an example of a recurrence that does not fit the form of the Master theorem?

page 6



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

2 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

1 k=PARTITION

2 QUICKSORT

3 QUICKSORT

2.1 Partition

1 pivot =

2 i =

3 for j = 1 to n-1

4 if A[j]

5

6 i =

7

8 RETURN i

page 7



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

2.2 Correctness of Partition (and Quicksort)

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

page 8



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

2.3 Running Time of Partition and Quicksort

page 9



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

3 Integer Multiplication (Karatsuba) (KT §5.5)

Input:

Goal:

3.1 Elementary School Algorithm

• Time complexity of grade school addition:

• Time complexity of grade school multiplication:

3.2 Algorithm Using Divide & Conquer

First attempt:

page 10



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

Total runtime:

You try! Describe a procedure that given four integers a, b, c, d, outputs the three numbers ab, cd and
ad+bc and uses only three multiplications (four would be obvious). You are free to use as many additions
and subtractions as you wish.
(Hint: Consider the product (a+ c)(b+ d).)

Second attempt:

page 11



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

page 12



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

4 Closest pair of points (KT §5.4)

Problem: given n points p1, p2, . . . , pn ∈ R2 in the plane, find a pair with the smallest Euclidean distance
between them.

• Brute force:

• If all points line on a line:

For simplicity, we will assume that no two points have the same x coordinate.

4.0.1 Divide and Conquer Algorithm

1. Divide

2. Conquer:

3. Combine:

page 13



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

Observation: Only need to consider pairs

The combine step: Compute

1. Take points

2. Sort these points by

3. For each point, compute its distance to

4. Output closest pair found.

Claim.

Proof.

page 14



Week 3: 4.3-4.5, 7.1-7.2, KT §5.5, 5.4/CLRS 33.4

4.1 Correctness

4.2 Running time

page 15


	Recurrences
	Recursion Tree Method (CLRS §4.4)
	The substitution method (CLRS §4.3)
	Careful with asymptotic notation and bogus proofs!
	Ceilings and floors

	Master Theorem (CLRS §4.5)

	Quicksort (CLRS §7.1, 7.2)
	Partition
	Correctness of Partition (and Quicksort)
	Running Time of Partition and Quicksort

	Integer Multiplication (Karatsuba) (KT §5.5)
	Elementary School Algorithm
	Algorithm Using Divide & Conquer

	Closest pair of points (KT §5.4)
	Divide and Conquer Algorithm
	Correctness
	Running time


