1 Breadth-First Search - Recap and alternative implementation (BFS) (CLRS §22.2)

```
BFS(s, Adj)
  level = { s:0 }
   parent = { s:None }
  i = 1
   frontier = [s]
   while frontier not empty:
        next = [ ]
 6
        for u in frontier
 7
             for v in Adj[u]
8
                  if v not in level
 9
                      level[v] = i
10
                      parent[v] = u
11
                      next.append(v)
12
13
        frontier = next
        i += 1
14
```

Runtime:

- For any vertex $u \in V$, each vertex v in Adj[u] enters next, then frontier only once (since v is added to level right before it is added to next).
 - $\circ\,$ For each vertex $u\in V,\,\mathrm{Adj}[u]$ is looped through exactly one time

$$\circ \ \sum_{u \in V} |Adj[u]| = \Theta(E)$$

• Total runtime: $\Theta(V+E)$

Remarks.

- For all v, the path (v, parent[v], parent[parent[v]], ..., s) in reverse is a shortest path from s to v of length level[v]
- The set of vertices we explored (all those reachable from s) together with the edges (parent[v], v]) for each v give a **BFS** tree

Week 9: CLRS Chapter 22 continued (KT Ch 3)	
Example	
Example	

Can't have edges from level i to level j for $j \geq i+2$

2 Depth-First Search (DFS) (CLRS §22.3)

Idea:

Example

```
1
2
3 u.color =
4 for v in
5 if v.color ==
6 v.parent
7 DFS-VISIT
8 u.color =
9 time
10 u.f
```

We usually use DFS to learn something about the graph (as opposed to a vertex as in BFS). We therefore usually use:

```
1
2  for u in
3      u.color =
4      u.parent =
5  for u in
6      if u.color ==
7      DFS-VISIT
```

Runtime.

2.1	\mathbf{Edge}	Classification

•	Forward	edge
---	---------	------

• Backward edge

• Cross edge

How can we detect what type of edge (u, v) is?

- Tree edge:
- Forward edge:
- Backward edge:
- Cross edge:

To distinguish forward from cross edge,

- $\bullet\,$ In forward edge
- In cross edge

Example

Example

What about directed graphs?

Theorem 22.10 In a DFS of an <u>undirected</u> graph G , every edge is either
In other words,
Proof.
Corollary. An undirected graph is acyclic if and only if
Colonally, in analogous Stability and in and only in
Proof.
1 100g.

Theorem The vertex v is a descendant of u in the DFS forest if and only if

 $Proof\ idea.$

Lemma 22.11 A directed graph is acyclic if and only if

Proof.

3 Topological Sort (CLRS §22.4)

Tasks to be performed where some tasks must be completed before others. E.g. prerequisites for courses. Input is

Example

Definition

$Algorithm. \ Input:$
1. Run
2. Output
Runtime.
Γheorem. The given algorithm outputs
Proof.

4 Strongly Connected Components (SCC) (CLRS §22.5)

Example

Definition

Consider now DFS on the graph G. We can pretend that this DFS takes place in G^{SCC} , in the following sense: we say that

- a component is discovered when
- ullet a component is finished when
- ullet a component starts

Key lemma: The "pretend" DFS on $G^{\rm SCC}$ induced by the DFS on G is a valid DFS exploration of $G^{\rm SCC}$. Proof idea.

Observation. The last vertex to finish
We can now identify the entire left-most component by
SCC(G)
1. Call DFS(G) to compute
2. Call $\mathrm{DFS}(G^T)$ where in the main outer loop consider
3. Output
Runtime.

Example