1 Huffman codes CLRS §16.3/ KT §4.8

Recall from last time:

1.1 Intro to compression

Huffman coding is probably the most common compression technique today. E.g. used in: zip files, mp3 files, common formats of image files (specifically in cases where we don't want to lose any data).

1.2 Prefix codes

Recall: Prefix codes allow for unambiguous parsing when we have variable length codewords.

Definition A **prefix code** for a set S is a function

$$\gamma: S \to \{0,1\}^*$$

such that for all $x, y \in S$, $x \neq y$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

Definition The average bits per letter of a prefix code γ is

$$\mathbf{ABL}(\gamma) = \sum_{x \in S} f_x |\gamma(x)|$$

Goal: given alphabet S and frequencies f, we want to find an optimal prefix code γ ; i.e. minimize $ABL(\gamma)$.

We can use binary trees to represent prefix codes!

Example

$$ABL(T) =$$

Can this encoding be made more efficient?

Definition A binary tree is **full** if

 ${\it Claim.}$ The binary tree corresponding to an optimal prefix code is full. ${\it Proof.}$

1.3 Greedy attempt 1: Shannon-Fano 1949

Create tree top-down, splitting ${\cal S}$ into

$$f_a=0.32, \quad f_e=0.25, \quad f_k=0.2, \quad f_r=0.18, \quad f_u=0.05$$

1.4 Greedy attempt 2: Huffman encoding 1952

- ullet Observation 1. Lowest frequency symbols should be
- Observation 2. The lowest level always contains
- Observation 3. The order in which symbols appear

Claim 1. There is an optimal prefix code with tree T^* where

Create tree bottom-up.

$$f_a = 0.32$$
, $f_e = 0.25$, $f_k = 0.2$, $f_r = 0.18$, $f_u = 0.05$

1.5 Algorithm

```
1   if |S| = 2:
2     return
3   Let y and z be
4   S' =
5   Remove y and z from
6   Insert new
7   T' =
8   T =
9   Return
```

Time complexity

- Naive implementation
- Use priority queue to store symbols

1.6 Proof of correctness/optimal

Claim 2. ABL(T) = Proof.

Claim 3. The Huffman code achieves the minimum ABL of any prefix codes. Proof.

2 Graph Algorithms

2.1 Intro - Examples, notation, applications

Graph search/graph exploration problems

Example applications. Google pagerank, Facebook social graphs, Google maps, internet routing, biological network (protein-protein interactions), puzzles and games

Example

Representing graphs

2.2	Breadth-First	Search	(BFS)	(CLRS	$\S 22.2$
-----	----------------------	--------	-------	-------	-----------

A motivating example for BFS: Pocket cube (2 \times 2 \times 2 Rubik's cube)

Example

J	3 .	F,	

Input:

Output:

Idea:

Example

```
1 level = { s:0 }
2 parent = { s:None }
3 i = 1
4 frontier = [s]
  while frontier not empty:
       next = [ ]
6
            for u in
7
8
                 for v in
9
                      if v not in
                          level[v] =
10
                          parent[v] =
11
                          next.append
12
            frontier =
13
14
                 i
```

Runtime

• For all v, the path

 $\bullet\,$ The set of vertices we explored

2.3 Depth-First Search (DFS) (CLRS §22.3)

Idea:

```
1
2
3 u.color =
4 for v in
5 if v.color ==
6 v.parent
7 DFS-VISIT
8 u.color =
9 time
10 u.f
```

We usually use DFS to learn something about the graph (as opposed to a vertex as in BFS). We therefore usually use:

```
1
2  for u in
3      u.color =
4      u.parent =
5  for u in
6      if u.color ==
7      DFS-VISIT
```

Runtime.

2.3.1 Edge Classification

Definition • Tree edge

• Forward edge

• Backward edge

• (Cross	edge		

How	can	we	detect	what	tupe	of	edae	(u,v)) is?

- Tree edge:
- Forward edge:
- Backward edge:
- Cross edge:

To distinguish forward from cross edge,

- $\bullet\,$ In forward edge
- $\bullet\,$ In cross edge

What about directed graphs?

Theorem 22.10 In a DFS of an <u>undirected</u> graph G , every edge is either
In other words,
Proof.
Corollary. An undirected graph is acyclic if and only if
coronary. In artaneous graph to defend it and only in
$P_{mod}f$
Proof.

Theorem if	22.9	(white-j	path the	orem) Th	ne vertex i	v is a desce	endant of \imath	ι in the I	OFS forest	if and only
Proof i	idea.									
Lemma 2	2.11	A directe	d graph is	s acyclic if	and only	if				
Proof.										

3 Topological Sort (CLRS §22.4)

Tasks to be performed where some tasks must be completed before others. E.g. prerequisites for courses. Input is represent as

Algorithm. Input:

- 1. Run
- 2. Output

Runtime.

Theorem. The given algorithm outputs

Proof.