
Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

1 Insertion Sort (CLRS §2.1, 2.2)

1.1 Intro and Examples

1

Example
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9

1Try it! https://www.lemmaplay.com/sort/insertion-sort.html
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1.2 Pseudocode (& General Pseudocode Conventions and Notation)

1 for j =

2 key =

3 i =

4 while

5

6

7 A[i+1] =

1.3 Proof of Correctness

1.3.1 Aside: Proof by Induction and Loop Invariants

• Proof by induction: We want to prove some statement P (n) for integers n ≥ 0.

1. Base case:

2. Inductive step:

3. Conclude P (n) holds for all integers n ≥ 0.

• Loop invariant: A property that holds throughout the execution of the algorithm

1. Initialization:

2. Maintenance:

3. Termination: When the loop terminates, invariant gives useful property that helps show that
the algorithm is correct.

Our loop invariant:
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1.3.2 Proof of correctness of insertion sort

• Initialization:

• Maintenance:

• Termination:
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1.4 Running time

Analyzing running time of an algorithm - each basic operation takes constant time: e.g. addition, assigning
a variable, checking next number in array, etc.

What is tj?

• If key > A[j − 1], then

• If A[j] < A[1], then

Overall running time:

• In the worst case,

• In the best case,

• What about average case?

Final note:
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2 Order of Growth and Asymptotic Behavior (CLRS §3.1)

Goal: Establish notation that enables us to compare relative performance of different algorithms.

Definition For a function g : N→ R+,

• Θ(g(n)) =

• O(g(n)) =

• Ω(g(n)) =
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Example

• polynomials

• n log n

• 2n log n

• 3n

• 3n + 2n

Claim. f ∈ O(g(n)) if and only if g ∈ Ω(f(n))
Proof.
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3 Divide and Conquer

3.1 Mergesort (CLRS §2.3)

3.1.1 The Merge Subroutine

1 i = 1

2 j = 1

3 for k = 1 to

4 if

5 C[k] =

6 i =

7 else

8 C[k] =

9 j =
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3.1.2 Proof of Correctness of Merge

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

3.1.3 Running Time of Merge
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3.1.4 Back to Mergesort: Correctness, Running Time, Recursion Tree
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Example
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3.2 Intro to Solving Recurrences (CLRS §4.3, 4.4)
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3.3 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

1 k=PARTITION

2 QUICKSORT

3 QUICKSORT

3.3.1 Partition

1 pivot =

2 i =

3 for j = 1 to n-1

4 if A[j]

5

6 i =

7

8 RETURN i
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3.3.2 Correctness of Partition (and Quicksort)

Loop Invariant:

3.3.3 Running Time of Partition and Quicksort
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