
Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

1 Insertion Sort (CLRS §2.1, 2.2)

1.1 Intro and Examples

1

Example
8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9

1Try it! https://www.lemmaplay.com/sort/insertion-sort.html

page 1

https://www.lemmaplay.com/sort/insertion-sort.html


Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

1.2 Pseudocode (& General Pseudocode Conventions and Notation)

1 for j =

2 key =

3 i =

4 while

5

6

7 A[i+1] =

1.3 Proof of Correctness

1.3.1 Aside: Proof by Induction and Loop Invariants

• Proof by induction: We want to prove some statement P (n) for integers n ≥ 0.

1. Base case:

2. Inductive step:

3. Conclude P (n) holds for all integers n ≥ 0.

• Loop invariant: A property that holds throughout the execution of the algorithm

1. Initialization:

2. Maintenance:

3. Termination: When the loop terminates, invariant gives useful property that helps show that
the algorithm is correct.

Our loop invariant:

page 2



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

1.3.2 Proof of correctness of insertion sort

• Initialization:

• Maintenance:

• Termination:

page 3



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

1.4 Running time

Analyzing running time of an algorithm - each basic operation takes constant time: e.g. addition, assigning
a variable, checking next number in array, etc.

What is tj?

• If key > A[j − 1], then

• If A[j] < A[1], then

Overall running time:

• In the worst case,

• In the best case,

• What about average case?

Final note:

page 4



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

2 Order of Growth and Asymptotic Behavior (CLRS §3.1)

Goal: Establish notation that enables us to compare relative performance of different algorithms.

Definition For a function g : N→ R+,

• Θ(g(n)) =

• O(g(n)) =

• Ω(g(n)) =

page 5



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

Example

• polynomials

• n log n

• 2n log n

• 3n

• 3n + 2n

Claim. f ∈ O(g(n)) if and only if g ∈ Ω(f(n))
Proof.

page 6



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3 Divide and Conquer

3.1 Mergesort (CLRS §2.3)

3.1.1 The Merge Subroutine

1 i = 1

2 j = 1

3 for k = 1 to

4 if

5 C[k] =

6 i =

7 else

8 C[k] =

9 j =

page 7



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3.1.2 Proof of Correctness of Merge

Loop invariant:

• Initialization:

• Maintenance:

• Termination:

3.1.3 Running Time of Merge

page 8



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3.1.4 Back to Mergesort: Correctness, Running Time, Recursion Tree

page 9



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

Example

page 10



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3.2 Intro to Solving Recurrences (CLRS §4.3, 4.4)

page 11



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3.3 Quicksort (CLRS §7.1, 7.2)

Idea:

Example

1 k=PARTITION

2 QUICKSORT

3 QUICKSORT

3.3.1 Partition

1 pivot =

2 i =

3 for j = 1 to n-1

4 if A[j]

5

6 i =

7

8 RETURN i

page 12



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

3.3.2 Correctness of Partition (and Quicksort)

Loop Invariant:

3.3.3 Running Time of Partition and Quicksort

page 13



Week 1: CLRS §2.1-2.3, 3.1, 4.3-4.5, 7.1-7.2

page 14


	Insertion Sort (CLRS §2.1, 2.2)
	Intro and Examples
	Pseudocode (& General Pseudocode Conventions and Notation)
	Proof of Correctness
	Aside: Proof by Induction and Loop Invariants
	Proof of correctness of insertion sort

	Running time

	Order of Growth and Asymptotic Behavior (CLRS §3.1)
	Divide and Conquer
	Mergesort (CLRS §2.3)
	The Merge Subroutine
	Proof of Correctness of Merge
	Running Time of Merge
	Back to Mergesort: Correctness, Running Time, Recursion Tree

	Intro to Solving Recurrences (CLRS §4.3, 4.4)
	Quicksort (CLRS §7.1, 7.2)
	Partition
	Correctness of Partition (and Quicksort)
	Running Time of Partition and Quicksort



