Homework 5: Due October 16 (11:59 p.m.)

Instructions

* Answer each question on a separate page.

* Honors questions are optional. They will not count towards your grade in the course. How-
ever you are encouraged to submit your solutions to these problems to receive feedback on
your attempts. Our estimation of the difficulty level of these problems is expressed through an
indicative number of stars '+’ = easiest) to (" * x x ' = hardest).

* You must enter the names of your collaborators or other sources as a response to Question 0.
Do NOT leave this blank; if you worked on the homework entirely on your own, please write
“None” here. Even though collaborations in groups of up to 3 people are encouraged, you are
required to write your own solution.

Question 0: List all your collaborators and sources: (—oo points if left blank)

Question 1: Efficient Fibonacci (3+5+2=10 points)

1. Show that it takes 2™ time to compute the n-th Fibonacci number F), if we use naive recursion.
For simplicity, assume that adding any two numbers, regardless of the their size, takes one unit of
time. (Hint: write out the recurrence for 7'(n), the cost of computing the n-th Fibonacci number,
and use induction.)

2. Describe an idea of reusing Fibonacci numbers that you have already calculated in order to output
the first n Fibonacci numbers much faster (e.g., in polynomial time rather than the naive 2%(™)),

3. How long does your algorithm take? State a © expression for the asymptotic run time of your algo-
rithm. Again assume that adding any two numbers only takes one unit of time.

Question 2: Rod Cutting (4+5+1=10 points)

Suppose we have a rod of length n inches and we also have an array of prices P, where P[i] denotes the
selling price ($) of a piece that is ¢ inches long. (See CLRS Ch15.1 for reference, which gives an algorithm
that uses dynamic programming to find a way of cutting the rod into pieces that maximizes the revenue).
Suppose now we have to pay a cost of $1 per cut. Define the profit we make as the revenue minus the total
cost of cutting. We want an algorithm that finds a way to cut the rod maximizing our profit. For your DP
algorithm, use the name MaxProrit for the (potentially multi-dimensional) array which stores values of
the subproblems.

1. What is the dimension of the array MaxPRroriT?
2. State the base cases and their values.
3. Give and justify the recurrence MaxProriT should satisfy.

4. Justify the run time of your algorithm to compute MaxPROFIT as a big-O expression.

Question 3: Subset Sum (1+1+1+5+2=10 points)

Let A = [ay,...,a,] be an array of n natural numbers. Given a number ¢ € N, we say ¢ is a subset sum
of A if there is a subset of indices S C {1,...,n} suchthat } ., a; = t. For example, if A = [1,3,5, 7]
then 12 is a subset sum of A since 5+ 7 = 12, but 2 is not. We want to design an algorithm that determines
whether a given number ¢ € N is a subset sum of A. Specifically, when given A = [ay,...,a,] and t € N
as input, the algorithm should output 1 if ¢ is a subset sum of A, and 0 otherwise. The algorithm should
output an answer (either O or 1) for any given ¢t € N.

We will use dynamic programming to solve this problem. The subproblem in your DP algorithm should
be SusserSum, which is defined as

, 1 if ¢ is a subset sum of the first i elements Ay.,; = [ay, ..., a;],
SuBserSum|i][t] = 0 otherwise

Also, let us define M =)" | a;, which is the sum of all numbers in A. The quantity M may appear
in the size of the DP array and the run-time of your algorithm.

1. Suppose A = [2, 1, 3]. Fill out the following table for A. Note that we define the sum over the empty
set to be 0. The pre-filled entries in the top left corner correspond to SusserSum[0][0] = 1 and
SusserSum|0][1] = 0.

t

W=D

Table 1: Fill in the entries for SuBserSum|i][t].

2. In general, what is the size of the DP array containing values for SuBserSum? (Hint: What is the
largest number you could even conceivably obtain as a subset sum of A? You may want to make use
of M for your expression.)

3. State the base cases and their values.

4. Give and justify the recurrence SuBserSum should satisfy. (Hint: Given inputs ¢ and ¢, we can either
use the i-th element a; or not use it in the subset sum for ¢. If we use a;, then the remaining subset
sum is ¢ — a; which is less than ¢.)

5. Justify the run time of your algorithm to compute SUBSETSuUM as a big-© expression. You may want
to use M for your expression.

Page 2

Honors Questions

Question 4: Honors

(**) Give an algorithm that computes the n-th Fibonacci number F,, in O(log n) time. (Here again we are
assuming each arithmetic operation takes unit time; the n-th Fibonacci number is ©(n) digits long, so if
we took into account the word size, we would obviously need at least {2(n) time to compute it)

Question 5: Honors

(**) Given an m x n size rectangle, we wish to divide it into non-overlapping square pieces, using the
least possible number of pieces. For example a 4 x 5 rectangle needs at least 5 pieces: a big 4 x 4 square
and 4 small 1 x 1 squares.

Figure 1: Dividing up a 4 x 5 rectangle using 5 squares

We might try to solve this using the idea of trying to cut the n x m size rectangle into two pieces either
by a vertical or a horizontal cut. The following pseudo-code tries all possible horizontal and vertical cuts
and picks the best case out of these.

MINTILINGS (M, 1):

if m == n then
return 1.
end if

Hpin = INTyax.
Vimin = INTyax.
fori =1to |m/2| do
H o = min(H i, MINTILINGS (7, 1) + MINTILINGS (M — 7, 1)).
end for
for j = 1to |n/2] do
Vinin = min(Vipin, MINTILINGS (2, j) + MINTILINGS (M, 1 — 7).
end for
return min(H i, Vinin)-

Use dynamic programming to improve this recursive method by avoiding re-computation for sub-problems
that have already been solved. What is the running time of your algorithm?
Does this approach work to find the optimal tiling? Why or why not? (Hint: Consider the figure below)

Page 3

Figure 2: Dividing up a 11 x 13 rectangle using 6 squares (two 4 x 4 squares and one each of 1 x 1,5 x 5,
6 x 6 and 7 X 7 squares)

Page 4

	List all your collaborators and sources: (-∞ points if left blank)
	Efficient Fibonacci (3+5+2=10 points)
	Rod Cutting (4+5+1=10 points)
	Subset Sum (1+1+1+5+2=10 points)
	Honors
	Honors

